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Abstract-A boundary "alue problem simulating a periodic array of spherical voids in an iso­
tropically hardening e1astil:-viscoplastic matrix is analyzed. The calculations show a shift from a
general alusymmetric deformation state to a mode of uniaxial straining at which point the plastic
deformation localizes to the ligament between neighboring voids. This event is associated with the
accelerated void growth accompanying coalescence. The numerical results are related to the descrip­
tion of void growth and coalescence within a phenomenological constitutive framework for pro­
gressively l:avitating solids.

I, INTRODUCTION

The nucleation and growth of microvoids plays a central role in the ductile fracture of
metals (Putlil:k. 1959; Rogers. 1%0; Beachem. 1%3; Gurland and Plateau. 1963). The
voids mainly nudeate at second phase particles. either by decohesion of the particlt.:-matrix
interface or by partide fral:ture. and linal rupture involves the growth of neighboring voids
to walescel1l.:e. Rased on the approximation of a porous plastic solid by a thick walled
spherical shell and carrying out an approximate limit .malysis of this conliguration. Gurson
(1975. 11)77) proposed a phenomenological constitutive relation for a progressively cavi­
tating solid. Within this formulation the voids arc represented in terms ofa single parameter.
the void volume fraction. The presence of the voids leads to a macroscopic dilatancy and
pressure sensitivity of plastic now.

An;llyses of the innuence of microvoids on plastic now and ductile fracture have been
carried out using the constitutive framework introduced by Gurson (1975, 1977). Simple
band type localization analyses have given predictions of plastic flow localization at realistic
strain levels (Yam;lmoto. 1978; Needleman and Rice, 1978; Saje et al., 1982). Full finite
clement analyses have reproduced observed failure behaviors in remarkable detail;
exhibiting, for example. the fracture mode transition characteristic of ductile structural
metals between a shear fmcture in plane strain tension (Tvergaard, 1982a; Becker
and Needleman. 1986). and a cup-cone fracture in axisymmetric tension (Tvergaard and
Needleman. 1(84).

These analyses have actually used modifications to the /low potential originally pro­
posed by Gurson (1975. 1977). The modifications are of two kinds. Based on comparisons
of shear band bifurcation predictions obtained from full numerical solutions for arrays of
voids ;lnd from the Gurson (1975. 1977) constitutive relation. Tvergaard (1981, 1982b)
suggested a modification to improve the accuracy of the Gurson (1975. 1977) relation at
small void volume fractions. A further modification (Tvergaard and Needleman, 1984) is
associated with modelling the complcte loss of stress carrying capacity. Although the flow
potential proposed by Gurson (1975. 1977) does permit a complete loss of stress carrying
capacity at a critical void volume fraction. this critical void volume fraction is unrealistically
high.

In this investigation. numerical solutions for the behavior of a cell model of an array
of voids arc compared with corresponding predictions based on the Gurson (1975, 1977)
model and its enhancements. Particular attention is given to the accelerated void growth
accompanying final coalescence. Previous cell model analyses have shown the importance
of void interaction effects. A doubly periodic array ofcircular cylindrical voids was analyzed
(Needleman. 1972) subject to plane strain tension and estimates of void coalescence strains
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were obtained much lower than those based on the isolated void analyses of McClintock
(1968) and Rice and Tracey ( 1969). Subsequent analyses of models of arrays of voids have
considered spht:rical as well as cylindrical void geometries and other deformation histories
(Andersson. 1977: Nemat-Nasser and Taya. 1976. 1977: Tvergaard. 1981. 1982b: Becker.
1983: Bourcier et ul.. 1986). The boundary value problem investigated here is the one
previously analyzed by Tvergaard (1982b) and Bourcier et ul. (1986) that simulates a three­
dimensional periodic array of spherical voids. The aggregate is subject to both axial and
radial stresses. A circular cylindrical cell surrounding each void is required to remain
cylindrical throughout the deformation history in order to simulate the constraint of the
surrounding material. By considering histories with different ratios of radial to axial stress
the elTect of stress triaxiality on void growth is studied. Here. the analyses are actually based
on a rate dependent generalization of the original Gurson (1975. 1977) model due to Pan
et ul. (1983), but the focus is on nearly rate independent behavior.

Direct comparisons arc made between the numerically obtained stress-strain and void
growth response of the cell model and predictions of the modified Gurson (1975, 1977)
constitutive relation. Our cell modd calculations show a shift in strain state to a mode of
uniaxial straining at which point the plastic deformation localizes to the ligament between
neighboring voids. This event is associated with the accelerated void growth accompanying
coalescence and its modelling in terms of the modification suggested by Tvergaard and
Needlcman (19R..l) is discussed.

2. PROBLEM FOR\IlJLATlON AND NUMERICAL METIIOD

The tinite clement analysis is based on a convected coordinate Lagrangian formulation
of the lidd equations with the initial unstressed state taken as reference. Alllieid quantities
are considered to be functions of convected coordinatcs, .1", which serve as particle lahcls,
and time t. This formulation has heen employed extensively in previous finite clement
analyses. e.g. Needk:man (1972) and Tvergaard (1976), and is reviewed in Needleman
(191'11).

The position, relative to a fixed Cartesian frame, of a material point in the initial
configuration is denoted by x. In the current configuration the material point initially at x
is at x. The displacement vector u and the det'(lrmation gradient F are defined by

(~x

U = X-x, F = _ .
('X

( I)

Base vectors in tht: reference configuration (unbarred) and III the current configuration
(barred) arc given by

('X ('X
gi = j)yi'

g, = (1)
l"'lJ,1

g' =y"g" g' - -'/- (3)-y g,

where g" and .ti'l are, respectively, the inVt:rses of the mt:tric tensors.'J,/ = ~,.~, and .el,) = g,' gl'
Attention is conlined to qU~lsi-static deformations ~lnd, with body forces neglected, the
principle of virtual work is written as

( r:'16£" d V = ( T(5u, dS.
J~ ~

(4)

Here, r: il are the contravariant components of KirchholT stress (r: = la, with a the Cauchy
stress) on the deformed convected coordinate net and Vand S are the volume and surface,
respectively, of the body in the reference configuration. The nominal traction components,
T, and Lagrangian strain components, E,/, are given hy
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Fig. I. A.,isymmclric mode! of a material containing an .uray of spherical voids. Due to the
assumed symmetry only lhe shaded «uadrant is analyzed numerically.

(5)

(6)

where ,. is the sllrf~u;e normal in the reference configuration, II, the components of the
displacement vector on base vectors in the reference configuration, 41nd ( )., denotes covari­
ant dillcrentiation in the rclcrence frame.

The rate boun<htry valuc problcm is formul4lted by expanding the principle of virtual
work, cqn (4), about the current state to obt4lin

where ( . ) = D( )!I't 41t fixed yi and the second term on the right-h4lnd side represents an
equilibrium correction term th4lt is used in the numeric4I1 procedure to reduce drift from
the equilibrium p4lth due to the discrete time step.

A cylindrical coordinate system is used for the specific bound4lry value problem con­
sidered here and we denote the radi4l1 coordinate as /' the circumferenti4l1 angle as l, and
the axial coordinate as yJ. As shown in Fig. I. we consider spherical voids of radius '0
located .dong the axis of a circular cylinder with an initial spacing of 2bo between void
centers. The cylinder has initial radius Ro and attention is confined to axisymmetric defor­
mations so th.1t 4111 field qU4lntities are independent of y~. Furthermore, the circular cyl­
indrical cell surrounding each particle is required to remain a circular cylinder throughout
the deformation history. Within each cell symmetry is assumed about the cell center line so
that only the shaded region of Fig. I is analyzed numerically. As discussed by Tvergaard
(1982b), this axisymmetric configuration can be considered an approximation to a three­
dimensional array of hexagonal cylinders.

The bOllnd4lry conditions for the axisymmetric region analyzed numerically are
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uJ = o. t' = o. t~ = O. on yJ = 0 (8)

(9)

(10)

(I \)

Here. 6:-c is a prescribed constant while 0 1 is determined by the analysis. With these
boundary conditions, the deformed circular cylindrical cell has radius R = Ro+VI' and
height 2b = 2bo+2VJ .

The lateral displacement rate, 01 is determined from the condition that the average
macroscopic true stresses acting on the cell follow the proportional history

with p a prescribed constant and

Roho{I i~n 1 1}1: 1 = --- ..~ [T 1·' R d rRh ho 0 • ~ n •

R Z

{2JRn

}
o "I

1:., = Ri. R',; 0 [T I,' ~ ~,,}' dy .

( 12)

( 13)

( 14)

The material is characterized as an isotropically hardening clastic -viscoplastic solid and
the total rate of deformation, D, is written as the slim of an c1astil: part. nc, and a plastic
part, 0 1', with

( (5)

( 16)

where f is the Jaumann rate of Kirchhoff stress, I the identity tensor, f: I the trace of t, t;
the effective plastic strain rate, E is Young's modulus, v is Poisson's ratio and

-r' = -r - ~ (t: I) I, ( 17)

if = EO [B/g(i}] I:m, gel) = (T o(i/co+ I),v, Lo = (T 0/E. ( 18)

Here, £ = Jedt and the function gel) represents the effective stress vs effective strain
response in a tensile test carried out at a strain rate such that e= E;). Also, (To is a reference
strength and Nand m are the strain hardening exponent and strain rate hardening exponent,
respectively.

Combining eqns (15) and (16) and inverting gives

t = Ie: (O-OP).

In component form, on the current base vectors, eqn (19) becomes

( 19)
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(20)

where the Lagrangian strain rate components appear through the identity tij = g,' D· gf
and

. 3f
tlpI = - ::e'l r'2a It·

(21 )

(22)

The covariant components of the Lagrangian strain rate tensor, ttl, on the reference base
vectors, are given by

(23)

For use in eqn (7), eqn (20) is expressed in terms of the contravariant components (on the
current base vectors) of the convected rate of Kirchhoff stress

(24)

where

(25)

The deformation history is calculated in a linear incremental manner and, in order to
increase the stable time step, the rate tangent modulus method of Peirce et al. (1984) is
used. This is a forward gradient method based on an estimate of the plastic strain rate in
the interval between t and t+at. The incremental boundary value problem is solved using
a combined finite clement Rayldgh-Ritz method (Tvergaard, 1976).

3. NUMERICAL RESULTS

In this investigation we explore the parameter dependence of void growth in pro­
portional stressing histories using the axisymmetric cell model in Fig. I. The parameters
varied are initial void volume fraction, stress state triaxiality, and matrix material strain
hardening. The material properties that remain fixed are given by E/(Jo = 500, v = 1/3 and
m = 0.0 I. Three values of the strain hardening exponent, N in eqns (18), are used: N = 0.2,
0.1, and 0, where N = 0 corresponds to a non-hardening solid.

To define the stress state triaxiality we introduce the macroscopic effective stress, r e,

and the macroscopic hydrostatic stress, r h, by

and the triaxiality ratio, T, is then defined as

T = r h = ~ [I + 2P]
r e 3 I-p

where p is the stress proportionality factor in eqn (12).

(26)

(27)
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The focus here is on triaxiality ratios I ~ T ~ 3. which cover the range from rather
blunt notched bar specimens for which T z::; I (Needleman and Tvergaard, 19H4), to the
tri~txiality prevailing in cmck tip fields for lightly hardening solids, T z::; 3 (MeMeeking.
1977). In particular. we will present numerical results for T = 1.0, 2.0 and 3.0, which
correspond to p = 0.40,0.625 and 0.73. respectively.

Two initial void volume fractions are considered,J~= 0.0104 and 0.0013. For a square
cdl (hoi Ro = I, Figs 2(b) and (:t» these correspond to rol Ro = 0.25 and 0.125, respectively.
We also carry out a few computations with rol Ro =0.25 and hoiRo = 8.0 (Fig. 2(c». This
gives an initial void volume fraction ofJ~ = 0.00 13. but with the nearest distance between
voids the same as for the square cell withJ~ = 0.0104.

A typical finite element mesh used in the square cell computations is shown in Fig. 3.
The mesh consists of 480 quadrilateral elements, 24 around the void and 20 in the mdial
direction. Each quadril~lteral consists of four "crossed" linear displacement triangles.

Figure 4 shows the square unit cell model response with N = 0.1 and an initial void
volume fractionJ~ = 0.0104. The macroscopic effective stress-macroscopic e11cctive strain
curve in Fig. 4(a) shows the competition between matrix material strain hardening and
porosity induced softening. Here. the macroscopic dfective stress is given in eqn (26), and
the macroscopic effective stmin ean be conveniently expressed, for the axisymmetric cell.
by

(28)

where E) = In (hlhn) and E1 = In (R/ Ro), with band R being the current cell height and
radius. respectively. As the deformation progresses. a maximum effective stress is reached
and. subsequently. a rapid stress drop occurs. The delay between the effective stress
maximum and the drop increases with decreasing triaxiality.
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Fig. 3. Finite clement mesh used for ""1 RII = l.O..f., = 0.0104. There are 4!!O 'luadrilateral clements.
each consisting of four "cwssed" linear displacement triangles.

Figure 4( b) shows the evolution of the void volume fraction. The void volume fraction
is computed via

(2lJ)

where VII is the volume of the undeformed cell.J~ the initial void volume fraction. and .1 Vc

the increase in the volume of the cylindrical cell due to the clastic dilation arising from the
imposed hydrostatic stress. The elastic dilation in eqn (29) is approximated by

.1vc = V (1_f,)3(1-2v)~
o 0 £ h· (30)

Figure 4(c) illustrates the change in cell radius as a function of effective strain. This last
figure shows that an effective strain is eventually reached at which the cell radius remains
constant. This implies that further deformation takes place in a uniaxial straining mode
which corresponds to flow localization into the ligament between radially adjacent voids.
As can be seen in Fig. 4(b), the void volume fraction increases rapidly at this point and this
event is associated with the load drop in Fig. 4(a). The computations are terminated when
l= 0.08.

Corresponding results for fa =0.0013 are shown in Fig. 5. The response is qualitatively
similar to that in Fig. 4. but the effective stress maximum and the uniaxial straining state
are achieved at larger macroscopic effective strains. In Fig. 5. where.fo = 0.0013, the shift
to a uniaxial macroscopic straining state. to a reasonable approximation. occurs at the
same void volume fraction for all three values of stress triaxiality. On the other hand. for
the larger of the two void volume fractions considered here, .fo = 0.0104 (Fig. 4), there is
a much larger spread in the void volume fraction at which this event takes place. It is
difficult. however. to identify precisely the value of the void volume fraction at which the
uniaxial straining state is attained. As shown in Figs 4 and 5. the strain associated with this
event can readily be found, but the void volume fraction increases rapidly at this point and
small differences in identifying the critical strain give large differences in the critical void
volume fraction. Even so, such differences in values of critical void volume fraction were
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Fig. 4. Finite clement results for belRo = 1.0.10 = 0.0 I04 and N = 0.1 with stress triaxialities T = 1.0.
2.0. and 3.0. (al Macroscopic effective strcss-effective strain response. The maximum stress points
are indicated by x. (b) Void volume fraction vs macroscopic cffective strain. (cl Area strain vs
macroscopic effective strain. The shift 10 a uniaxial straining deformation mode is marked by O.

observed to be less than ±0.0 I for a reasonable spread of possible critical strains. Results
analogous to those in Figs 4 and 5 have been obtained for N =0 and 0.2 and will be
discussed in conjunction with a phenomenological constitutive description of porous plastic
solids.



Void growth and coalescence in porous plastic solids 843

(0) 20

1.6

T:I

1.2 \
..

:-1

08

0.4

00
00 01 02 03 04 05 06 0.7 08 09 10

E•
(b) 008

T:3 T:2 T:I

006

004·

002

000
00 01 02 03 04 05 06 07 08 09 10

E•
(C) 10

0.8 T:I

N 06c::-N 0
c:::s 04-

02

00
0.0 01 02 03 04 05 06 0.7 08 09 1.0

E•
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2.0. and 3.0. (a) Macroscopic clTL'Ctive stress-elTcctive strain response. The maximum stress points
arc indicated by x. (b) Void volume fraction vs macroscopic effective strain. (e) Area strain vs
macroscopic elTL'Ctive strain. The shift to a uniaxial straining deformation mode is marked by O.

Figure 6 shows contours of constant plastic strain. e. at various stages of void growth
for the case with T = 2.0. fo = 0.0104 and N = O.I. The shift to a macroscopic uniaxial
straining state has taken place between Figs 6(c) and (d). Rather large strains develop once
the necking down process begins. The finite element mesh becomes highly distorted which
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gives some mesh induced stilli.:ning. This is responsiole for the curvature at the end of thc
falling portion of the stress strain curves in I;igs 4 and 5 (and in suosequent figures). We
also note that. although the maximum strains occur along the void surface at all stages of
deformation in Fig. 6. the peak hydrostatic tension moves out to the cell boundary along
the /-axis. i.e. to the point midway along the ligament between adjacent voids. This occurs
when the void evolves into a prolate shape as well as when it takes on the oblate shape in
Fig. 6.

The void shape depends on the triaxiality level and deformed meshes for the thn.:e
triaxiality levels in Fig. 5 an: shown in Fig. 7. At T = 1.0 (p = 0.40). the void evolves into
a prol.tte shape. whcreas for the higher triaxiality valucs T ~ 2.0 (p ~ 0.625), the void
becomes oblate. For an isolated spherical void in a rigid--perfectly plastic solid. the transition
bct ween a prolate shape and an oblate shape occurs for T = 1.51 (p = 0.54) (Budiansky ('(
al.. 19S2).

Figure g illustrates the elli.:ct of cell shape on the stress-strain response with T = 2.0.
Results arc shown for the three cell shapes of Fig. 2. Until the stress drop. the stress strain
response is the same for both calculations with j;, = 0.0013. However. localization sets in
at a much lower strain for the cell with hoi Ro = S.O than for the square cell. For the
elongated cell. the shift to an overall uniaxial straining state occurs when f::::: 0.003 as
compared with/::::: 0.03 for the sqlwre cell. The void spaeing at which the shift to a uniaxial
str.tining state occurs was also computed. Deline " as the distance from the origin to the
void surface along the /-axis and '-I as the distancc from the origin to thc void surface
along the y'-axis. Thc ligament betwecn voids is then 2( R - 'd. where R is the current cell
radius. and the void length along the tensile axis is 2,-,. For j;, = 0.00 13. the shift to a
uniaxial straining state occurs at 'J/(R -,,) = 0.28 with hoi Ro = 1.0. while with hoi Ro = 8.0,
,-,/( R -,,) = 0.49. We note that for both bol Ro = 1.0 and 8.0 the void evolves into an oblate
shape with ,d".::::: 1.1 (Fig. 7(0». For the case with};) = 0.0104, ,-,t(R-'I) = 0.49 at the
shift to a uniaxial straining state (the void shape is more nearly spherical in this casc with
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Fig. 7. Def"rmed meshes li,r the case where h"j R" ~, I.!l.t" = ll.!lO!.' anti N = 0.1 illustrating the
elfect "I' stress tria~iality on der'>rJlIed mid shape. The initial cdl shape is shown in hg. 2(a):
(a) r 1.0. I,', 0.1,1>1\. f 0.011>.\. (h) r 20.10.. 0.2IMI./ 01l2~. (c) r .10.10, 0.09(1).

r IJI).j2.

'II', ~ 1.(3). lienee. in Fig. X the initial stress strain response is primarily a function of
void volume fraction. while the onset of localization primarily depends on spacing.

The value of 'I!(R -'d at the shift to a uniaxial straining state depends on triaxiality
as shown by calculations with T = 1.0. With j;, = 0.0013. ho! Ro = 1.0 and 8.0 give
,,/( R - 1'1) = 1.06 and I.()~. respectively. at the onset of strain localization onto the ligament
between adjacent voids. At this lower triaxiality the void takes on a prolate shape. as in
Fig. 7(a); at the shift to a uniaxial straining state rll'l = 2.0 with hoiRu = 1.0 and 'l/" = 1.4
with h,,1 Ro = 8.0. Brown and Embury (1973) have proposed a void coalescence criterion
based on the void length parallel to the tensile axis being equal to the void spacing. At the
lower stress triaxiality. T = 1.0. the Brown and Embury (1973) spacing criterion provides
a good approximation in the two cases considered here. with the spacing identified with the
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Fig. 8. Macroscopic elfective stress strain curves for N = 0.1. T = 2.0: hol Ro = 8.0. to =0.0013
(-); ho/R" = 1.0./" = 0.0013 (... ); ho/R" = 1.0./,. = 0.0104 (---I.
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ligament length 2(R - '1)' With T = 2.0 the shift to a uniaxial straining state occurs before
this condition is satisfied.

4. PHENOMENOLOGICAL DESCRIPTION OF VOID GRO\\-TH

The cell model calculations will be related to a rate sensitive version of the Gurson
(1975. 1977) constitutive relation (Pan el al.. 1983). Within the Gurson (1975. 1977)
constitutive framework. the porosity is characterized by a single scalar internal variable f.
the void volume fraction. For the fully dense material. f = O. the isotropic hardening
viscoplastic solid used in the cell model calculations is recovered. The flow potential intro­
duced by Gurson (1975. 1977) has the fonn

U; (3 q'Uh), 2<l> = a2+2qi/· cosh 26 -I-qi/* = o. (31 )

Here u. is the Mises effective stress. Uh = ~O': I the hydrostatic stress. and a- the average
strength of the matrix material. Parameters ql and q2 were introduced by Tvergaard (1981.
1982b) to bring shear band bifurcation predictions of the Gurson (1975,1977) constitutive
relation into closer agreement with corresponding results of full numerical analyses of a
periodic array of voids.

Function f· was proposed by Tvergaard and Needleman (1984) to account for the
effects of rapid void coalescence at failure. Initiallyf· = j: as originally proposed by Gurson
(1975, 1977) but at some critical void fraction.fc. the dependence off· onfis increased in
order to simulate a more rapid decrease in strength as the voids coalesce

(32)

The constant f: is the value of f'" at zero stress in eqn (31), i.e. f: = I/t/l. As /-+k
f· -+f: and the material loses all stress carrying capacity. Based on experimental studies
discussed by Brown and Embury (1973) and Goods and Brown (1979) and on numerical
results by Andersson (1977), Tvergaard and Needleman (1984) suggested that the values
offc and Ir be taken as 0.15 and 0.25. respectively.

In general. the evolution of the void volume fraction results from the growth ofexisting
voids and the nucleation of new voids. Here. however, attention is confined to void growth
only. The rate of increase of void volume fraction due to the growth of existing voids is
determined from plastic incompressibility of the matrix material

J= (I - f) DP : I. (33)

The plastic part of the rate of deformation, DP. is taken in a direction normal to the tlow
potential and is given by

ccJ)
DP = A~.

cO'

By setting the plastic work rate equal to the matrix dissipation we obtain

a: DP = (I-f)at..

(34)

(35)

By combining eqns (34) and (35) the plastic flow proportionality factor, A, is detennined
as
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(36)

Writing the rate of deformation tensor as the sum of an elastic part, DC, and a plastic part,
DP, and then inverting. gives the expression for the Jaumann rate of Cauchy stress, ii, as

(37)

where !f' is the tensor of (isotropic) linear elastic moduli (21).
The elfective stress and hydrostatic stress entering the flow potential, eqn (31), can be

identified with the corresponding macroscopic stress quantities, eqns (26), of the cell model.
The constitutive equations of thc Gurson (1975, 1977) model can readily be solved numeri­
cally for various proportional strcssing histories and such solutions are compared with cell
model prcdictions in Figs 9-13. In each figure the macroscopic effective stress~ffective

strain curvc and the void volumc fraction evolution arc compared. In each case the effective
strain at which the shift to uniaxial straining takes place is marked.

Figure 9 shows a comparison with the original Gurson (1975, 1977) relation, ql = 1.0,
q" = 1.0, and Tvergaard's (1981, 1982b) suggested values, ql = 1.5, qz = 1.0, for N = 0.1
and.fo = 0.0013. Until thc shift to a uniaxial straining state the response of the cell model
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and 0 marks the shift to a uniaxial straining deformation 1II00e.

lies between the two sets of phenomenological curves. Subsequently, the void volume
fraction increases more rapidly and the stress fal1s more sharply than either of the Gurson
( 1975. 1977) rdation predictions. It is this sharper stress drop and accompanying increase
in void volume fraction growth rate that the function/*Uj in cqn (32) is intended to model
(also see figs 4 and 5).

Figure 10 shows the same cell model results but the curves for the phenomenological
response use ({, = 1.25 .tnd (/1 = 1.0. Thus. a very good lit to the cell model results is given
hy a value of (/I = 1.25 halfway between the original Gurson (1975. 1977) modd and
Tn:rgaard's (llJX2h) suggestion of 1.5. Also. in Fig. 10 modification (32) is utilized with
( = 0.03 and j; = 0.13 to account for the .u."Ccierated void growth accompanying coalesc­
ence. The value ofj; is chosen to obtain a good approximation to the void volume fraction
\s strain curws at/>(.

Figures I I -13 show the cel1 model response and the predictions of the modified Gurson
(1975. 1977) model for other values of the strain hardening exponent, N, and of the initial
void volume fraction. ;;1' In these figures. as in Fig. 10, q, = 1.25, (/2 = 1.0 and Ir = 0.13.
The value off.: is taken as 0.03 whenj~ = 0.0013. Fig. I \, and as 0.055 when;;] = 0.0104,
Figs 12 and 13. The void volume fraction is fixed atfo = 0.0013 in Figs 10 and II ; N = 0.1
in Fig. 10 and N = 0 in Fig. I I. In Figs 12 and 13fo = 0.0104; N = 0 in Fig. 12 and N = 0.2
in Fig. 13. Comparison of Figs II and 12 illustrates the effects of varyingj~ between 0.0013
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Fig. II. Comparison of I:dl modd response: with the predil:tions of the modilied Gurson (1')75.
1'J77) modd using q, == 1.25, q, == 1.0 and inl:orporating the funl:tion I°(j) with.r.. == 0.03 and

J; == 0.13 in elln (32). Results arc shown for N == 0, bol No == 1.0,j~ == 0.0013. with stress tria~ialities,

7' == 1.0, 2.0, and 3.0. (a) Mal:roscopil: ctfel:tive stress vs mal:roscopic ctft.'l:tive strain. (b) Void
volume fral:tion vs m:ll:roscopil: elfel:tive strain. The cell model response is the solid line and 0

marks the shift to a uniaxial straining deformation mode.

and 0.0 I04 at fixed N = O. In Fig. 12. with T = 3.0, the shift to a uniaxial straining state
occurs at a void volume fraction significantly below 0.055. but for a non-hardening solid
at this high triaxiality, there is little change either in the stress-strain response or the void
volume fraction-strain response associated with the shift to an overall uniaxial straining
mode.

5. DISCUSSION

The form of eqn (31) was arrived at by Gurson (1975, 1977) through an approximate
rigid-plastic limit analysis of a thick walled spherical shell. However. the three conditions.
(i) that the flow potential reduce to the isotropic Mises expression for f =O. (ii) that the
dependence on void volume fraction is linear when O'h = 0, as in pure shear and (iii) that
the dependence on stress triaxiality. Uhfa-, bc exponential as suggcstcd by the McClintock
(1968) and Rice and Tracey (1969) solutions, essentially lead to eqn (31) with Tvergaard's
(1981, 1982b) q parameters being arbitrary constants associated with the latter two
conditions. Here. axisymmetric cell model solutions that account for void interaction
cffects and for void shape changes (Fig. 7), are compared with the aggregate stress-strain
and the void volumc fraction evolution predictions of the modified Gurson (1975. (977)
constitutive relation for proportional stressing histories.
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(')77) model llsing 'I, = 1.25. q, '" 1.0 and il1l:urporaling the fun':lion fOlf) wilh.l; = 0.055 and
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T = 1.0. 2.0. anJ 3.0. (a) Macroscopic ctfective stress vs macroscupie ctfective str'lin. (b) Vuid
volullle fmclion vs macroscupie etfective strain. The cell modd response is the soliJ line and 0

marks the shift 10 a uni.uial slraining Jeformalion mode.

Rather good agreement is achieved between the cdl modd calculatio"ns and the pre­
dictions of Gurson's (1975, 1977) constitutive rdation using the values 'I, = 1.25 and
'I! = 1.0 for Tvergaard's (1981, 1982b) parameters. Tvergaard's (1981, 1982b) suggestion
01''1, = 1.5 was based on a comparison of the cell modd and Gurson (1975. 1977) theory
results for bifurcation. In Tvergaard (1982b), Figs 4(a), 6(a), 7(4.1), 9(a), the cell model
values for the maximum traction and for the stmin at maximum tmction generally fall
between the '/I = 1.0 and 1.5 results. Becker et al. (1988) have used the present finite dement
cell modd formulation but with an e)l;perimentally determined matrix uniaxial stress-strain
curve and found good agreement between the cdl model response and Gurson's (1975.
1977) constitutive relation predictions for 'II = 1.25. q~ = 0.95. Also, Mear (1986) used a
spherical shell modd to account for void interaction effects, restricted attention to small
strains. considered non-proportional loading response, and typically found behavior in line
with q values between 'II = 1.0 and 1.5. Hence, with Tvergaard's (1981. 1982b) 'I parameters
taken as 'I, :::: 1.25 and 'I! :::: 1.0. the cell modd and Gurson's (1975. 1977) constitutive
relation predictions for aggregate stiffness and porosity are in reasonable accord in a rather
wide range of circumstances. However, Figs 1()'-13 exhibit a systematic trend indicating
increasing 'II values with decreasing strain hardening.

Tvergaard (1982b) analyzed bifurcations from the cylindrically symmetric mode into
a localized band type mode. which occurs somewhat after the maximum load (force/unit
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marks the shift to a uniaxial straining deformation mode.

original area) point. [n our calculations. the overall response of the cell model for the void­
matrix aggregate exhibits a rather abrupt shift in strain state to a uniaxial straining mode,
while maintaining the circular cylindrical symmetry. In this uniax.ial straining mode the
void grows rapidly with very little increase in overall straining. The calculations here show
that even when a localization of the type considered by Tvergaard (1982b) is precluded,
straining docs localize onto the ligament between neighboring voids.

The value oflc, which signifies the onset ofcoalescence in the modification ofTvergaard
and Needleman (1984), appears to vary slowly with stress triaxiality and matrix strain
hardening. but to depend strongly on the initial void volume fraction. Thus, takinglc to
depend on initial void volume fraction but not on matrix hardening or stress triaxiality is
a reasonable approximation over the range of conditions considered here. The appropriate
values oflc for the void volume fractions considered here,.fo = 0.0013 and 0.0104, are 0.03
and 0.055, respectively. Consistent with the present results, Becker et al. (1988) found
Ic = 0.12, 0.06, and 0.04 for initial void volume fractions of 0.07, 0.026, and 0.004, respec­
tively. For the smaller initial void volume fractions (.fa ~ 0.026), these values of fc are
significantly lower than the valuefc = 0.15 suggested by Tvergaard and Needleman (1984).

The above values offc are based on analyses of cells for which hoiRo = 1.0 in Fig. I.
As shown in Fig. 8, the attainment of a maximum stress and the shift to a uniaxial straining
mode are sensitive to the uniformity of the void distribution. This is consistent with
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Tvergaard's (1982b) results for the dependence of the maximum load on cell aspect ratio.
However, the initial stress-strain response, at least for low void volume fractions, is well
approximated as being a function of void volume fraction. independent of the cell aspect
ratio. The etTect of the nonuniformity of void volume fraction distributions on localization
in a small material element has been investigated by Becker (1987). Using distributions
obtained from measurements on sintered iron tensile specimens and characterizing the
aggregate in terms ofGurson's (1975.1977) constitutive relation. Becker (1987) found little
inHuence of the nonuniformity of the distribution on the stress-strain response. but a rather
large effect of distribution on the strain to 1~lilure initiation.

The focus here has been on the relationship between predictions of Gurson's (1975.
1977) constitutive relation and cell model analyses that account for void interaction effects
and for void shape changes. A separate issue concerns the agreement between such analyses
and experiment. fn their theoretical and experimental study of porous iron notched tensile
bars. Becker ct al. ( 1988) found that the theoretical predictions provided a good description
of porosity evolution and of the strength reduction due to void growth. However. when the
stress triaxiality is low. the modified Gurson (1975. 1977) constitutive relation with (II = 1.25
and (h = 0.95 underestimates the rate at which the strength decreases with increasing initial
porosity and accordingly so do cell model calculations.
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