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Abstract—A boundary value problem simulating a periodic array of spherical voids in an iso-
tropically hardening elastic-viscoplastic matrix is analyzed. The calculations show a shift from a
general axisymmetric deformation state to a mode of uniaxial straining at which point the plastic
deformation localizes to the ligament between neighboring voids. This event is associated with the
accelerated void growth accompanying coalescence. The numerical results are related to the descrip-
tion of void growth and coalescence within a phenomenological constitutive framework for pro-
gressively cavitating solids.

l. INTRODUCTION

The nucleation and growth of microvoids plays a central role in the ductile fracture of
mictals (Puttick, 1959 Rogers, 1960 Beachem, 1963 ; Gurland and Plateau, 1963). The
voids mainly nucleate at sccond phase particles, cither by decohesion of the particle-matrix
interface or by particle fracture, and final rupture involves the growth of neighboring voids
to coalescence. Based on the approximation of a porous plastic solid by a thick walled
spherical shell and carrying out an approximate limit analysis of this configuration, Gurson
(1975, 1977) proposed a phenomenological constitutive relation for a progressively cavi-
tating solid. Within this formulation the voids are represented in terms of a single parameter,
the void volume fraction. The presence of the voids leads to a macroscopic ditatancy and
pressure sensitivity of plastic flow.

Analyses of the influence of microvoids on plastic flow and ductile fracture have been
carricd out using the constitutive framework introduced by Gurson (1975, 1977). Simple
band type localization analyses have given predictions of plastic flow localization at realistic
strain levels (Yamamoto, 1978 ; Needleman and Rice, 1978 ; Saje er al., 1982). Full finite
element analyses have reproduced observed failure behaviors in remarkable detail;
exhibiting, for example, the fracture mode transition characteristic of ductile structural
metals between a shear fracture in plane strain tension (Tvergaard, 1982a; Becker
and Needleman, 1986), and a cup-cone fracture in axisymmetric tension (Tvergaard and
Needleman, 1984),

These analyses have actually used modifications to the flow potential originally pro-
posed by Gurson (1975, 1977). The modifications are of two kinds. Based on comparisons
of sheuar band bifurcation predictions obtained from full numerical solutions for arrays of
voids and from the Gurson (1975, 1977) constitutive relation, Tvergaard (1981, 1982b)
suggested a modification to improve the accuracy of the Gurson (1975, 1977) relation at
small void volume fractions. A further modification (Tvergaard and Needleman, 1984) is
associated with modelling the complcte loss of stress carrying capacity. Although the flow
potential proposed by Gurson (1975, 1977) does permit a complete loss of stress carrying
capacity at a critical void volume fraction, this critical void volume fraction is unrealistically
high.

In this investigation, numerical solutions for the behavior of a cell model of an array
of voids are compared with corresponding predictions based on the Gurson (1975, 1977)
model and its enhancements. Particular attention is given to the accelerated void growth
accompanying final coalescence. Previous cell model analyses have shown the importance
of void interaction effects. A doubly periodic array of circular cylindrical voids was analyzed
(Needleman, 1972) subject to plane strain tension and estimates of void coalescence strains
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were obtained much lower thun those based on the isolated void analyses of McClintock
(1968) and Rice and Tracey (1969). Subsequent analyses of models of arrays of voids have
considered spherical as well as cvlindrical void geometrics and other deformation histories
{Andersson, 1977 ; Nemat-Nasser and Tava, 1976, [977: Tvergaard, 1981, 1982b; Becker.
1983 Bourcier ef al.. 1986). The boundary value problem investigated here is the one
previously analyzed by Tvergaard (1982b) and Bourcier ¢f ¢/. (1986) that simulates a three-
dimensional periodic array of spherical voids. The aggregate is subject to both axial and
radial stresses. A circular cylindrical cell surrounding cach void is required to remain
cylindrical throughout the deformation history in order to simulate the constraint of the
surrounding material. By considering histories with different ratios of radial to axial stress
the effect of stress triaxiality on void growth is studied. Here, the analyses are actually based
on a rate dependent generalization of the original Gurson (1975, 1977) model due to Pan
et al. (1983), but the focus is on nearly rate independent behavior.

Direct comparisons are made between the numerically obtained stress—strain and void
growth response of the cell model and predictions of the modified Gurson (1975, 1977)
constitutive relation. Our cell model calculations show a shift in strain state to a mode of
uniaxial straining at which point the plastic deformation localizes to the ligament between
neighboring voids. This event is associated with the accelerated void growth accompanying
coalescence and its modelling in terms of the modification suggested by Tvergaard and
Needleman (1984) is discussed.

2. PROBLEM FORMULATION AND NUMERICAL METHOD

The fintte clement analysis is based on a convected coordinate Lagrangian formulation
of the field equations with the initial unstressed state taken as reference. All ficld quantitics
are considered to be functions of convected coordinates, 1, which serve as particle labels,
and time ¢ This formulation has been employed extensively in previous finite element
analyses, c.g. Needleman (1972) and Tvergaard (1976), and is reviewed in Needleman
(1982).

The position, relative to a fixed Cartesian frame, of a material point in the initial
contiguration is denoted by x. In the current configuration the material point initially at x
is at X. The displacement vector u and the deformation gradient ¥ are defined by

u=xX-x, F=_. (N

Base vectors in the reference contiguration (unbarred) and in the current configuration
(burred) are given by

)

xR

g =77 &=-=7 (2)
cy cy

g=9"g B=7g (3)

where g und g are, respectively, the inverses of the metric tensors g, = g, g, and g, = g, &,
Attention is confined to quasi-static deformations and, with body forces neglected, the
principle of virtual work is written as

f T9F,, d}' = J- T'ou, dS. (4)
v A

Here, ¥ are the contravariant components of KirchhofT stress (v = Ja, with ¢ the Cauchy
stress) on the deformed convected coordinate net and ¥ and S are the volume and surface,
respectively, of the body in the reference configuration. The nominal traction components,
7", and Lagrangian strain components, E,,, are given by
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Fig. 1. Axisymmetric model of a material containing an array of spherical voids. Due to the
assumed symmetry only the shaded quadrant is analyzed numerically.

T = (17 4+ M)y, )
3 l k
b=, +u,+u ) (6)

where v is the surface normuad in the reference configuration, u, the components of the
displacement vector on base vectors in the reference configuration, and (), denotes covari-
ant differentiation in the reference frame.

The rate boundary value problem is formulated by expunding the principle of virtual
work, egn (4), about the current stite to obtain

AfJ‘ [tV3E, + titdu, ) dV = A,J
.

T'ou, dS—{J‘ OE, dV— J‘ T 31, dS] )]
A v A

where () = &)/ at fixed ' and the second term on the right-hand side represents an
equilibrium correction term that is used in the numerical procedure to reduce drift from
the equilibrium path due to the discrete time step.

A cylindrical coordinate system is used for the specific boundary value problem con-
sidered here and we denote the radial coordinate as 3, the circumferential angle as »*, and
the axial coordinate as 3*. As shown in Fig. I, we consider spherical voids of radius r,
located along the axis of a circular cylinder with an initial spacing of 25, between void
centers. The cylinder has initial radius R, and attention is confined to axisymmetric defor-
mations so that all ficld quantitics are independent of 3*. Furthermore, the circular cyl-
indrical ccll surrounding cach particle is required to remain a circular cylinder throughout
the deformation history. Within each cell symmetry is assumed about the cell center line so
that only the shadced region of Fig. 1 is analyzed numerically. As discussed by Tvergaard
(1982b). this axisymmetric configuration can be considered an approximation to a three-
dimensional array of hexagonal cylinders.

The boundary conditions for the axisymmetric region analyzed numerically are
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=0 T'=0, T°=0. ony*'=0 (8)
T"=0. on ")+ =r; 9)
W=U, =6, T'=0. T°=0, ony'=b, (10)
W =0, T°=0. T°=0. ony' =R, (1

Here. &, is a prescribed constant while U, is determined by the analysis. With these
boundary conditions, the deformed circular cylindrical cell has radius R = R, + U,. and
height 26 = 2b,+2U;.

The lateral displacement rate, U, is determined from the condition that the average
macroscopic true stresses acting on the cell follow the proportional history

£ I, .
T Z—.: =p (12)
with p a prescribed constant and
Roby f 1 [" N ,}
= —— e q 37 x
Z =h {b(, J:; [T')r 2k, dy (13)
Ei= 58 oy sy dyte 14
! R‘{R(, ) (T) o,y dy (14)

The material is characterized as an isotropically hardening clastic -viscoplastic solid and
the total rate of deformation, D, is written as the sum of an clastic part, D¢, and a plastic
part, D", with

p =TV Vi as

="F f-‘E(f- ) )
3¢ ,

D=t (16)

where % is the Jaumann rate of Kirchhoff stress, I the identity tensor, #:1I the trace of , &
the effective plastic strain rate, £ is Young's modulus, v is Poisson’s ratio and

I , 3
r’=t—§(r:l)l, &'=;,~r’:r’ (7

-

£= éo[ff/y(&’)]""", 9(&) = oy (Efeo+ l)‘v' £y = 6,/E. (18)

Here, & = [ dr and the function g(é) represents the effective stress vs effective strain
response in a tensile test carried out at a strain rate such that £ = &,. Also, gy is a reference
strength and N and m are the strain hardening exponent and strain rate hardening exponcnt,
respectively.

Combining eqns (15) and (16) and inverting gives

t=2:(D-D"). (19)

In component form, on the current base vectors, eqn (19) becomes
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= FME—PY (20)

where the Lagrangian strain rate components appear through the identity £, = g,"D-g,
and

E
(1+v)

ikl __

[ (-lk -/I+g g/k)+ -I/gk:l (Zl)

P = z—gf‘fk’r}k. 2)

The covariant components of the Lagrangian strain rate tensor, £y, on the reference base
vectors, are given by

1 . .
= s(Fﬁij""Fijki)- (23)

For use in eqn (7). eqn (20) is expressed in terms of the contravariant components (on the
current base vectors) of the convected rate of Kirchhoff stress

= C™ME,— P/ (24)

Ci/kl - _(//l/kl [‘I:kt/I+JIIt/k+ -/k II -/l lk] (25)

The deformation history is calculated in a linear incremental manner and, in order to
increase the stable time step, the rate tangent modulus method of Peirce et al. (1984) is
used. This is a forward gradient method based on an estimate of the plastic strain rate in
the interval between ¢ and r+ At. The incremental boundary value problem is solved using
a combined finite element Rayleigh-Ritz method (Tvergaard, 1976).

3. NUMERICAL RESULTS

In this investigation we explore the parameter dependence of void growth in pro-
portional stressing histories using the axisymmetric cell model in Fig. 1. The parameters
varied are initial void volume fraction, stress state triaxiality, and matrix material strain
hardening. The material properties that remain fixed are given by Efgy = 500, v = 1/3 and
m = 0.01. Three values of the strain hardening exponent, N in eqns (18), are used: N = 0.2,
0.1, and 0, where N =0 corresponds to a non-hardening solid.

To define the stress state triaxiality we introduce the macroscopic effective stress, X,
and the macroscopic hydrostatic stress, Xy, by

1

=|Z;—-L,[, 2h=§(23+22;) (26)
and the triaxiality ratio, 7, is then defined as
., | 1+2p
=—n_ | T2 27
d Z 3 [ l-p ] @

where p is the stress proportionality factor in eqn (12).
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Fig. 2. The three cell geometries analyzed. Only the quadrant analyzed numerically is shown:
G By Ry = 10, fy = 00013 (b) hy/Ry = 1O fy = 0.0104; (¢) by, Ry = 8.0, /i = D.001 3,

The focus here is on triaxiality ratios | < T €3, which cover the range from rather
blunt notched bur specimens for which 7' = | (Needleman and Tvergaard, 1984), to the
triaxiality prevailing in crack tip fields for lightly hardening solids, 7'~ 3 (McMeceking,
1977). In particular, we will present numerical results for 7= 1.0, 2.0 and 3.0, which
correspond to p = 0.40, 0.625 and 0.73, respectively.

Two initial void volume fractions are considered, f; = 0.0104 and 0.0013. For a square
cell (hy/R, = |, Figs 2(b) and (a)) these correspond to ry/ R, = 0.25 and 0.125, respectively.
We also carry out a few computations with ry/R, = 0.25 and by/R, = 8.0 (Fig. 2(c)). This
gives an initial void votume fraction of f; = 0.0013, but with the nearest distance between
voids the same as for the square cell with f = 0.0104.

A typical finite element mesh used in the square cell computations is shown in Fig. 3.
The mesh consists of 480 quadrilateral elements, 24 around the void and 20 in the radial
direction. Euch quadrilateral consists of four ““crossed™ linear displacement triangles.

Figurc 4 shows the square unit cell model response with ¥ = 0.1 and an initial void
volume {raction f, = 0.0104. The macroscopic effective stress~macroscopic effective strain
curve in Fig. 4(a) shows the competition between matrix material strain hardening and
porosity induced softening. Here, the macroscopic effective stress is given in eqn (26), and
the macroscopic effective strain can be conveniently expressed, for the axisymmetric cell,
by

2
Ec=§|EJ—El| (28)

where E; = In (b/h,) and E| = In (R/R,), with b and R being the current cell height and
radius, respectively. As the deformation progresses, a maximum effective stress is reached
and. subsequently, a rapid stress drop occurs. The delay between the effective stress
maximum and the drop increases with decreasing triaxiality.
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Fig. 3. Finite element mesh used for A/ Ry = 1.0, /5, = 0.0104. There are 480 quadrilateral elements,
cach consisting of four “crossed™ lincar displacement triangles.

Figure 4(b) shows the evolution of the void volume fraction. The void volume raction
is computed via

. - Va AV,
S=1-p0=f0-", (29)

where V), is the volume of the undeformed cell, /, the initial void volume fraction, and AV,
the increase in the volume of the eylindrical cell due to the elastic dilation arising from the
imposed hydrostatic stress. The elastic dilation in eqn (29) is approximated by

ave = vy(1—j 22

Z,. (30)
Figure 4(c) illustrates the change in cell radius as a function of effective strain. This last
figure shows that an effective strain is eventually reached at which the cell radius remains
constant. This implies that further deformation taukes place in a uniaxial straining mode
which corresponds to flow localization into the ligament between radially adjacent voids.
As can be seen in Fig. 4(b), the void volume fraction increases rapidly at this point and this
event is ussociated with the load drop in Fig. 4(a). The computations are terminated when
/= 0.08.

Corresponding results for f; = 0.0013 are shown in Fig. 5. The response is qualitatively
similar to that in Fig. 4, but the effective stress maximum and the uniaxial straining state
are achiceved at larger macroscopic effective strains, In Fig. 5, where f, = 0.0013, the shift
to a uniaxial macroscopic straining state, to a rcasonable approximation, occurs at the
same void volume fraction for all threc values of stress triaxiality. On the other hand, for
the larger of the two void volume fractions considered here, f; = 0.0104 (Fig. 4), there is
a much larger spread in the void volume fraction at which this event takes place. [t is
difficult, however, to identify precisely the value of the void volume fraction at which the
uniaxial straining state is attained. As shown in Figs 4 and 5, the strain associated with this
event can readily be found, but the void volume fraction increases rapidly at this point and
small diffcrences in identifying the critical strain give large differences in the critical void
volume fraction. Even so, such differences in values of critical void volume fraction were
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observed to be less than +0.01 for a reasonable spread of possible critical strains. Results
analogous to those in Figs 4 and 5 have been obtained for ¥ =0 and 0.2 and will be
discussed in conjunction with a phenomenological constitutive description of porous plastic
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Fig. 4. Finite clement results for by/ Ry = 1.0, f; = 0.0104 and N = 0.1 with stress triaxialitics T = 1.0,

2.0, and 3.0. (a) Macroscopic cfective stress—cflective strain response. The maximum stress points
are indicated by x. (b) Void volume fraction vs macroscopic cffective strain. (c) Arca strain vs
macroscopic cffective strain. The shift to a uniaxial straining deformation mode is marked by O.

solids.
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Fig. 5. Finite clement results for b/ Ry = 1.0, f; = 0.0013 and N = 0.1 with stress triaxialities T = 1.0,
2.0, and 3.0. (a) Macroscopic effective stress-effective strain responsc. The maximum stress points
arc indicated by x. (b) Void volume fraction vs macroscopic effective strain. (c) Area strain vs
macroscopic effective strain. The shift to a uniaxial straining deformation mode is marked by O.

Figure 6 shows contours of constant plastic strain, , at various stages of void growth
for the case with T = 2.0, f; = 0.0104 and N = 0.1. The shift to a macroscopic uniaxial
straining state has taken place between Figs 6(c) and (d). Rather large strains develop once
the necking down process begins. The finite element mesh becomes highly distorted which
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Fig. 6. Contours of constant plastic strain, & in the deformed configuration of the quadriant analyzed
numerically for the case where hy/R, = 1O, fo 00104, ¥ = 01, and 7 = 20 (1) £, = 0.0293;
(b) £, 00945 (¢) £, - 0146 (d) £, = 0.1K.

gives some mesh induced stitfening. This is responsible for the curvature at the end of the
fulling portion of the stress strain curves in Figs 4 and 5 (and in subsequent figures). We
also note that, although the maximum strains occur along the void surface at all stages of
deformation in Fig. 6, the peak hydrostatic teasion moves out to the celt boundary along
the y'-axis, .e. to the point midway along the ligament between adjacent voids. This occurs
when the void evolves into a prolate shape as well as when it takes on the oblute shape in
Fig. 6.

The void shape depends on the triaxiality level and deformed meshes for the three
triaxiality levels in Fig. 5 are shown in Fig. 7. At T = 1.0 (p = 0.40), the void evolves into
a prolate shape, whereas for the higher triaxiality values T2 2.0 (p 2 0.625), the voud
becomes oblate. Foran isolated spherical void in a rigid-perfectly plastic solid, the transition
between a prolate shape and an oblate shape occurs tor T = 1.5 (p = 0.54) (Budiansky ¢/
al., 1982).

Figure 8 illustrates the effect of cell shape on the stress-strain response with 7= 2.0.
Results are shown for the three cell shapes of Fig. 2. Until the stress drop, the stress-strain
response is the saume for both calculations with f, = 0.0013. However, localization sets in
at a much lower strain for the cell with b,/ R, = 8.0 than for the square cell. For the
clongated cell, the shift to an overall uniaxial straining state occurs when f = 0.003 as
compared with /2 0.03 for the square cell. The void spacing at which the shift 1o a uniaxial
straining state occurs was also computed. Dctine r, as the distance from the origin to the
void surface along the y'-axis and r; as the distance from the origin to the void surface
along the y*-axis. The ligament between voids is then 2(R —r,). where R is the current cell
radius, and the void length along the tensile axis is 2r,. For f, = 0.0013, the shift to a
uniaxial straining state occurs at ry/(R—ry) = 0.28 with hy/R, = 1.0, while with A,/ R, = 8.0,
ri/(R—r)) = 0.49. We note that for both b,/ R, = 1.0 and 8.0 the void evolves into an oblate
shapc with ri/ry = 1.1 (Fig. 7(b)). For the case with f, = 0.0104, ri/(R—r)) = 0.49 at the
shift to a uniaxial straining state (the void shape is more nearly spherical in this case with
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(c)
tig. 7. Deformed meshes for the case where by/R, = 1.0, f, = 0.0013 and N = 0.1 illustrating the
clfect of stress triaxiality on deformed void shape. The inttial cell shape is shown in Fig. 2(a):
) I 10 E, 006068, - 000063, (b)y 1 - 20K -0200 7 -002d: (¢} £ - 30, F - 00916,
0042,

ri/ry = 1.03). Hence, in Fig. 8 the initial stress strain response is primarily a function of
voud volume fraction, while the onset of localization primarily depends on spacing,.

The value of ri/(R—r)) at the shift to a uniaxial straining state depends on triaxiality
as shown by caleulations with T = 1.0. With f, =0.0013, h,/R, = 1.0 and 8.0 give
rJ(R—r)) = 106 and 1.08, respectively, at the onset of strain localization onto the ligament
between adjacent voids. At this lower triaxiality the void takes on a prolate shape, as in
Fig. 7(x) ; at the shift to a uniaxial straining state ry/ry = 2.0 with by/R, = 1.0and ry/r, = 1.4
with h,/R, = 8.0. Brown and Embury (1973) have proposed a void coalescence criterion
based on the void length parallel to the tensile axis being equal to the void spacing. At the
lower stress triaxiality, T = 1.0, the Brown and Embury (1973) spacing criterion provides
a good approximation in the two cases considered here, with the spacing identified with the
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Fig. 8. Macroscopic effective stress-strain curves for ¥ = 0.1, T = 2.0: b/R, = 8.0, f, = 0.0013
(——): o/ Ry = 1O, f3 = 0.0013 (--): bo/Ry = 1.0, f, = 0.0104 (-—~).
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ligament length 2(R—r;). With T = 2.0 the shift to a uniaxial straining state occurs before
this condition is satisfied.

4. PHENOMENOLOGICAL DESCRIPTION OF VOID GROWTH

The cell model calculations will be related to a rate sensitive version of the Gurson
(1975, 1977) constitutive relation (Pan er al.. 1983). Within the Gurson (1975, 1977)
constitutive framework. the porosity is characterized by a single scalar internal variable f.
the void volume fraction. For the fully dense material, f =0, the isotropic hardening
viscoplastic solid used in the cell model calculations is recovered. The flow potential intro-
duced by Gurson (1975, 1977) has the form

|,

o=

3 h b
5+2q, f* cosh ( Z;h)—l—ﬁf‘”:o. 31

Q

Here o is the Mises effective stress, o, = }a:1 the hydrostatic stress, and ¢ the average
strength of the matrix material. Parameters ¢, and ¢, were introduced by Tvergaard (1981,
1982b) to bring shear band bifurcation predictions of the Gurson (1975, 1977) constitutive
relation into closer agreement with corresponding results of full numerical analyses of a
periodic array of voids.

Function /* was proposed by Tvergaard and Needleman (1984) to account for the
effects of rapid void coalescence at failure. Initially /* = f, as originally proposed by Gurson
(1975, 1977) but at some critical void fraction, /.. the dependence of /* on fis increased in
order to simulate a more rapid decrease in strength as the voids coalesce

J. s<f.
SN AL ~ (32)
fHFZFU=LD > L

The constant f* is the value of f* at zero stress in eqn (31), i.e. f¥= Uy, As /> f,
S* = f¥ and the material loses all stress carrying capacity. Based on experimental studics
discussed by Brown and Embury (1973) and Goods and Brown (1979) and on numerical
results by Andersson (1977), Tvergaard and Needleman (1984) suggested that the valucs
of f; and f; be taken as 0.15 and 0.25, respectively.

In general, the evolution of the void volume fraction results from the growth of existing
voids and the nucleation of new voids. Here, however, attention is confined to void growth
only. The rate of increase of void volume fraction due to the growth of existing voids is
determined from plastic incompressibility of the matrix material

f=0-NDr:L (33)

The plastic part of the rate of deformation, D?, is taken in a direction normal to the flow
potential and is given by

co
DP =A—. (34)
(A4
By setting the plastic work rate equal to the matrix dissipation we obtain

6:D° = (I —f)dé. (35)

By combining eqns (34) and (35) the plastic flow proportionality factor, A, is determined
as
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Fig. 9. Comparison of cell model response with the predictions of the modified Gurson (1975, 1977)
model with ¢, = 1.0, g, = 1.0 (- ~-) and with g, = 1.5, ¢, = 1.0 (- -). Results are shown for N = 0.1,
bR, = 1.0, f, = 0.0013, with stress triaxialities, 7 = 1.0, 2.0, and 3.0. (a) Macroscopic effective
stress vs mucroscopic eflective strain. (b) Void volume fraction vs macroscopic effective strain, The
cell model response is the solid line and O marks the shift to s uniaxial straining deformation mode.

_ ek (36)

Writing the rate of deformation tensor as the sum of an elastic part, D¢, and a plastic part,
DP, and then inverting, gives the expression for the Jaumann rate of Cauchy stress, &, as

d=%:(D-D") 37)

where & is the tensor of (isotropic) linear clastic moduli (21).

The effective stress and hydrostatic stress entering the flow potential, eqn (31), can be
identified with the corresponding macroscopic stress quantitics, eqns (26), of the cell model.
The constitutive equations of the Gurson (1975, 1977) model can readily be solved numeri-
cally for various proportional stressing histories and such solutions are compared with cell
model predictions in Figs 9-13. In cach figure the macroscopic effective stress—effective
strain curve and the void volume fraction evolution are compared. In each case the effective
strain at which the shift to uniaxial straining takes place is marked.

Figure 9 shows a comparison with the original Gurson (1975, 1977) relation, ¢, = 1.0,
g, = 1.0, and Tvergaard's (1981, 1982b) suggested values, ¢, = 1.5, ¢, = 1.0, for N = 0.1
and f, = 0.0013. Until the shift to a uniaxial straining state the response of the cell model
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Fig. 10. Comparison of cell model response with the predictions of the modified Gurson (1975,

1977) model using ¢, = 1.25, 4. = 1.0 and incorporating the function f*(f) with f, = 0.03 and

/i = 0.13ineqn (32). Asin Fig. 9, results are shown for N = 0.1, by/ R, = 1.0, f, = 0.0013, with stress

triaxialities, 7= 1.0, 2.0, and 3.0. (a) Macroscopic effective stress vs macroscopic effective strain.

(b) Void volume fraction vs macroscopic effective strain. The cell model response is the solid line
and O marks the shift to a umaxial straining deformation mode.

lics between the two sets of phenomenological curves. Subscquently, the void volume
fraction increases more rapidly and the stress falls more sharply than either of the Gurson
(1975, 1977) relation predictions. It is this sharper stress drop and accompanying increuse
in void volume fraction growth rate that the function f*( f) in eqn (32) is intended to model
(also sce Figs 4 and 5).

Figure 10 shows the sume cell model results but the curves for the phenomenological
response use ¢ = 1.25 and ¢, = 1.0. Thus, a very good fit to the cell model results is given
by a value of ¢, = 1.25 haltway between the original Gurson (1975, 1977) model and
Tvergaard's (1982b) suggestion of 1.5. Also, in Fig. 10 modification (32) is utilized with
£.=0.03 and f; = 0.13 to account for the accelerated void growth accompanying coalesc-
ence. The value of /; is chosen to obtain a good approximation to the void volume fraction
vs strain curves at /> f..

Figures 1 1-13 show the cell model responsc and the predictions of the modified Gurson
(1975, 1977) model for other values of the strain hardening exponent, N, and of the initial
void volumc fraction, f,. In these figures, as in Fig. 10, ¢, = 1.25, ¢, = 1.0 and f; = 0.13.
The value of /. is taken as 0.03 when f, = 0.0013, Fig. 11, and as 0.055 when f; = 0.0104,
Figs 12 and 3. The void volume fraction is fixed at f, = 0.0013 in Figs 10and 11; N = 0.1
in Fig. 10and vV = 0in Fig. 1. InFigs 12and 13 f, = 0.0104;: N = 0in Fig. [2and N = 0.2
in Fig. 13. Comparison of Figs |1 and 12 illustrates the effects of varying £, between 0.0013
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Fig. 11. Comparison of cell model response with the predictions of the modified Gurson (1975,
1977) model using ¢, = 1.25, ¢, = 1.0 and incorporating the function f*(f) with f, = 0.03 and
Jr=0.13 in ¢qn (32). Results are shown for N = 0, b/ R, = 1.0, f, = 0.0013, with stress triaxialities,
T =10, 20, and 3.0. (1) Macroscopic effective stress vs macroscopic effective strain. (b) Void
volume fraction vs macroscopic effective strain. The cell model response is the solid line and O
marks the shift to a uniaxial straining deformation mode.

and 0.0104 at fixed N = 0. In Fig. 12, with T = 3.0, the shift to a uniaxial straining state
oceurs at-a void volume fraction significantly below 0.055, but for a non-hardening solid
at this high triaxiality, there is little chunge either in the stress-strain response or the void
volume fraction-strain response associated with the shift to an overall uniaxial straining
mode.

5. DISCUSSION

The form of eqn (31) was arrived at by Gurson (1975, 1977) through an approximate
rigid-plastic limit analysis of a thick walled spherical shell. However, the three conditions,
(i) that the flow potential reduce to the isotropic Mises expression for /= 0, (it} that the
dependence on void volume fraction is linear when o, = 0, as in pure shear and (iii) that
the dependence on stress triaxiality, 0,/d, be exponential as suggested by the McClintock
(1968) and Rice and Tracey (1969) solutions, essentially lead to eqn (31) with Tvergaard’s
(1981, 1982b) g paramcters being arbitrary constants associated with the latter two
conditions. Here, axisymmetric cell model solutions that account for void interaction
effects and for void shape changes (Fig. 7), are compared with the aggregate stress-strain
and the void volume fraction evolution predictions of the modified Gurson (1975, 1977)
constitutive relation for proportional stressing histories.
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Fig. 12. Comparison of cell model response with the predictions of the moditied Gurson (1975,
1977) mode! using ¢, = 1.25, ¢, = 1.0 and incorporating the function f*(f) with /, = 0.055 and
Jr = 0.13 in eyn (32). Results are shown for N = 0, b/ R, = 1.0, f, = 0.0104, with stress triaxialitics,
T =10, 2.0, and 3.0. (a) Mucroscopic effective stress vs macroscopic effective strain. (b) Void
volume fraction vs macroscopic effective strain, The cell model response is the solid line and O

marks the shift to a uniaxial straining deformation mode.

Rather good agreement is achieved between the cell model calculations and the pre-
dictions of Gurson's (1975, 1977) constitutive relation using the values ¢, = 1.25 and
¢, = 1.0 for Tvergaard’s (1981, 1982b) parameters. Tvergaard's (1981, 1982b) suggestion
of ¢, = 1.5 was based on a comparison of the cell model and Gurson (1975, 1977) theory
results for bifurcation. In Tvergaard (1982b), Figs 4(a), 6(a), 7(a), 9(a), the cell model
values for the maximum traction and for the strain at maximum traction generally fall
between the ¢y = 1.0 and 1.5 results. Becker er af. (1988) have used the present finite element
cell model formulation but with an experimentally determined matrix uniaxial stress-strain
curve and found good agreement between the cell model response and Gurson’s (1975,
1977) constitutive relation predictions for g, = 1.25, ¢, = 0.95. Also, Mear (1986) used a
spherical shell model to account for void interaction effects, restricted attention to small
strains, considered non-proportional loading response, and typically found behavior in line
with ¢ values between ¢, = 1.0 and 1.5. Hence, with Tvergaard’s (1981, 1982b) ¢ parameters
taken as ¢, = 1.25 and g, = 1.0, the cell model and Gurson's (1975, 1977) constitutive
relation predictions for aggregate stiffness and porosity are in reasonable accord in a rather
wide range of circumstances. However, Figs 10-13 exhibit a systematic trend indicating
increasing g, values with decreasing strain hardening.

Tvergaard (1982b) analyzed bifurcations from the cylindrically symmetric mode into
a localized band type mode. which occurs somewhat after the maximum load (force/unit
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Fig. 13. Comparison of cell model response with the predictions of the modified Gurson (1975,
1977) model using ¢, = 1.25, ¢, = 1.0 and incorporating the function f*(f) with £, = 0.055 and
Jr = 0.13in eqn (32). Results are shown for ¥ = 0.2, b/R, = 1.0, f, = 0.0104, with stress triaxialities,
T =10, 2.0 and 3.0. (a) Macroscopic effective stress vs macroscopic effective strain. (b) Void
volume fraction vs macroscopic effective strain. The cell model response is the solid line and O
marks the shift to a uniaxial straining deformation mode.

original area) point. In our calculations, the overall response of the cell model for the void—
matrix aggregate exhibits a rather abrupt shift in strain state to a uniaxial straining mode,
while maintaining the circular cylindrical symmetry. In this uniaxial straining mode the
void grows rapidly with very little increase in overall straining. The calculations here show
that even when a localization of the type considered by Tvergaard (1982b) is precluded,
straining does localize onto the ligament between neighboring voids.

The value of £, which significs the onset of coalescence in the modification of Tvergaard
and Ncedleman (1984), appears to vary slowly with stress triaxiality and matrix strain
hardening, but to depend strongly on the initial void volume fraction. Thus, taking /. to
depend on initial void volume fraction but not on matrix hardening or stress triaxiality is
a reasonable approximation over the range of conditions considered here. The appropriate
values of £, for the void volume fractions considered here, f; = 0.0013 and 0.0104, are 0.03
and 0.055, respectively. Consistent with the present results, Becker er al. (1988) found
/f. =0.12, 0.06, and 0.04 for initial void volume fractions of 0.07, 0.026, and 0.004, respec-
tively. For the smaller initial void volume fractions (f5 < 0.026), these values of f; are
significantly lower than the value f, = 0.15 suggested by Tvergaard and Needleman (1984).

The above values of £, are based on analyses of cells for which by/R, = 1.0 in Fig. 1.
As shown in Fig. 8, the attainmeént of a maximum stress and the shift to a uniaxial straining
mode are sensitive to the uniformity of the void distribution. This is consistent with



¥32 J. KopLIK and A, NEEDLEMAN

Tvergaard’s (1982b) results for the dependence of the maximum load on cell aspect ratio.
However, the initial stress-strain response. at least for low void volume fractions, is well
approximated as being a function of void volume fraction, independent of the cell aspect
ratio. The effect of the nonuniformity of void volume fraction distributions on localization
in a small material element has been investigated by Becker (1987). Using distributions
obtained from measurements on sintered iron tensile specimens and characterizing the
aggregate in terms of Gurson’s (1975, [977) constitutive relation, Becker (1987) found little
influence of the nonuniformity of the distribution on the stress—strain response. but a rather
large effect of distribution on the strain to failure initiation.

The focus here has been on the relationship between predictions of Gurson's (1975,
1977) constitutive relation and cell model analyses that account for void interaction effects
and for void shape changes. A separate issue concerns the agreement between such analyses
and experiment. I[n their theoretical and experimental study of porous iron notched tensile
bars, Becker er al. (1988) found that the theoretical predictions provided a good description
of porosity evolution and of the strength reduction due to void growth. However, when the
stress triaxiality is low, the modified Gurson (1975, 1977) constitutive relation with ¢, = 1.25
and ¢» = 0.95 underestimates the rate at which the strength decreases with increasing initial
porosity and accordingly so do cell model calculations.
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